AUTONOMOUS ROBOTIC EXPLORATION OF DYNAMIC ENVIRONMENTS

Alex Brooks
Mentor: Dr. Wolfgang Fink
University of Arizona
NASA Space Grant Symposium
PROBLEM STATEMENT

• How can we build exploratory behaviors for robotic agents to autonomously respond to objects of interest?

• How can we interpret an agent’s reasoning in a difficult environment?

HOW WE THINK OF NAVIGATION

It’s simple. Move towards* the objective!

Why wouldn’t we try to go through this wall and take a shorter path?

*The selected route is generally determined by a combination of factors, such as proximity, safety, and time.
HIERARCHICAL BEHAVIOR DESIGN

Overall Objective: Get to the Goal

Current Behavior: Approaching the goal
THE AGENT: ROVER EQUIPPED WITH 2D LIDAR

2D Lidar Module, taken from
OVERALL OBJECTIVE: EXPLORE (ROAM) AREAS
Hierarchical Design in Practice

Object Avoidance

1. Retrieve array of Lidar data
2. Remove measurement errors
3. Segment different regions
4. Retrieve the radial with the closest distance reading
 - **High**: What is the retrieved object's threat level?
 - Yes: Go straight. Object is in close proximity to agent, but not directly in front of it
 - No: Turn away from the object (in place) to lower the threat level on the next iteration
 - **Low**: Retrieve the object containing the closest radial
5. **No**: Back away to make space
6. **Yes**: Does the agent have space to pivot?
 - Yes: Back away to make space
 - No: Pivot to center it

Exploration

1. Is the path centered?
 - Yes: Select ratio dependent path of interest
 - No: Pivot to center it
2. Any paths deep enough to be of interest?
 - Yes: Drive towards the path angle
 - No: Turn around (pivot right)
3. Calculate radial path lengths
4. Update saved Lidar data
PROBLEM: TILTING MEANS CHANGING LINE OF SIGHT!
Problem: Tilting means changing line of sight!
HOW CAN WE UNDERSTAND AN AGENT’S ACTIONS IN AN UNFAMILIAR ENVIRONMENT?

• Structuring the code as independent entities in a hierarchy is convenient for rapidly prototyping new behaviors.

• If the agent behaves unexpectedly, how do we know why it took the steps that it did?

Visualization!
HOW VISUALIZATIONS LOOK – A BIRD’S EYE VIEW
ROVER LIDAR VISUALIZER
ACKNOWLEDGEMENTS

Special thanks to the following for their assistance on this project.

- Wolfgang Fink
- Mark Tarbell
- NASA traineeship grant NNX15AJ17H via Arizona Space Grant Consortium (AZSGC)
THANK YOU!